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Abstract

This report describes a variational approach for assimilation of single-point, in-situ observations

of surface elevation and velocity into the extended Boussinesq model of Wei et al. (1996). The
mathematical framework for assimilation is presented, along with applications of the procedure for
two cases: monochromatic waves and broad-spectrum irregular waves. Overall the performance
of the approach for monochromatic waves is quite good; while for irregular waves, some of the
short-wave detail, especially for waves propagating in the along-shore direction, is missed. As
part of the development work, an existing parallel Boussinesq model code was improved through
addition of run-up, wave-breaking and and bottom-friction models, and a directional wavemaker
was implemented.
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1 Introduction

Coastal regions represent the boundary where the effects of weather systems off-shore impact activ-

ities on land. One of the main features of this boundary is the shoaling of waves over the continental

shelf. As waves shoal, their amplitude increases, resulting in large loads on near-shore structures,

etc. This increase in amplitude can also lead to wave breaking, which can drive near-shore circula-

tion, with the resulting currents playing a significant role in sediment transport and beach erosion.

In addition, for amphibious military operations, the near-shore region with its steep and breaking

waves, and attendant currents, represents a natural barrier of sorts which needs to be traversed

in an efficient fashion. For all of these reasons, there is an abiding interest in the monitoring and

prediction of near-shore ocean waves.

This report describes a approach which can be used to take time-histories of velocity and sea-

surface elevation from a number of discrete spatial locations and use them to produce a synoptic

estimate of the wave field for the region of interest. The approach relies on a variational data

assimilation algorithm which makes use of the extended Boussinesq model of Wei et al. (1996). In

this document, the mathematical framework for assimilation is first presented. It assumes that the

Boussinesq model is an exact representation of the physics of near-shore waves, and seeks a solution

to the model which best fits the data. The key input to the Boussinesq model which produces the

desired solution is the wavemaker source function. To determine the source function which yields

the best fit to the data, a cost function, a measure of error in the predictions, is first defined. A set

of adjoint equations is then developed. The solution of the adjoint equations is used to calculate the

gradient of the cost function with respect to the wave maker source function. This gradient is used

in an iterative minimization scheme to determine the source function which yields the minimum

error.

In this program, a parallel FORTRAN code was developed that implements the assimilation

procedure. As part of the code development, an existing parallel Boussinesq code based on both

the formulation and numerical approach of Wei et al. (1996), was extended to include modeling for

run-up, wave-breaking and bottom friction. In addition both monochromatic and broad-spectrum

wavemakers were implemented. This results in a Boussinesq model code capable of generating

realistic wave fields either as a product of the assimilation process, or as a direct forward prediction
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based on a known incident wave spectrum.

The assimilation procedure was applied to two cases, observations of monochromatic waves

and irregular waves. Application of the procedure for monochromatic waves converged quickly

and comparison of the estimated time series at the observation locations to the observations shows

good agreement between the predictions and observations. Application for irregular waves produces

encouraging, but less-accurate results.

In the following sections, the assimilation approach is developed, followed by a description of

the Boussinesq model extensions for wave run-up, breaking and bottom friction. Then, simulated

data to be used in the assimilation procedure is presented. Application of the procedure to two

different situations, monochromatic waves and irregular waves, is then discussed. The conclusions

of the study are then presented, along with recommendations for future work.

2 The extended Boussinesq model

The extended Boussinesq model of Wei et al. (1996) forms the basis for this work. This model

consists of approximate forms of the continuity and momentum equations for water of finite depth.

The solution yields the surface elevation rj(x, t), where x = (x, y) is position in the horizontal plane,

and the horizontal velocity u(x,t) = (u,v) at a reference depth z = z0 . The reference depth is

defined as z, = 30h where /0 = -0.531 and h = h(x) is the water depth.

2.1 Governing equations

For the work in this effort, the weakly nonlinear form of the model is used (after Wei et al., 1996).

It consists of a continuity equation

77t : E(7,u,,v) + (x,t) , (1)

and two momentum equations

[U(u)]t = F(7,u,v) + [Fi(v)]t +F , (2)

[V(v)], = G(7,u,v) + [GI(u)]) + +G8 , (3)
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where

U = UL+ [b h 2u: + b2 h (hu),, (4)

V = V+ [bih 2V5 + b2h (hv), 5] (5)
E( )

E = - [(h + 77) u]. - [(h + ?7) v],

- {h [alh2 (uXX + vXY) + a 2h (hu)•x + a 2h (hv)zy] }D
- {h [alh2 (un, + vyy) + a2 h (hu)xy + a2h (hv)1 y] }y , (6)

F = -gl -(uux+vuy), (7)

G = -gy - (uvx +vvy , (8)

F, = -h [blhvxy + b2 (hv)xj (9)

C, = -h [blhUxy + b2 (hu)xy] (10)

In addition, S(x, t) in (1) is an internal 'wavemaker' source function, and !F, and Gs in (2) and (3),

respectively, are source terms representing wave-breaking, bottom friction, etc.; these are discussed

below. In the above expressions, a, = 302/2 - 1/6, a 2 = 3o - 1/2, b, = 002/2 and b2 = 300; where

Q0 = z,,,/h = -0.531.

The boundary conditions for these equations vary depending upon the situation. For a domain

surrounded by an impermeable, perfectly reflecting boundary, the velocity and the surface-elevation

gradient in the boundary-normal direction vanish at the boundary. Waves can be generated using

a prescribed mass 'source' in a region which acts as a wavemaker. Alternatively, prescribed, time-

varying values of velocity and surface elevation on the boundaries can account waves entering the

domain from outside.

2.2 Additional physical models

The preceding equations apply to propagation of waves in a region of finite water depth, but do not

adequately treat beaches, where the water depth goes to zero and the waves run up on the beach,

or breaking waves where steep waves lose energy through dissipation while momentum is conserved.

Additional models are necessary to capture these physical effects. In addition, to simulate real-

world situations, a means for generating waves at the domain boundary is necessary. In this section,
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wave run-up and wave-breaking models used in the Boussinesq model are described, along with the

wave-generation approach used.

2.2.1 Wave run-up model

To accommodate wave run-up on a beach, a 'slot' run-up model is used. This model effectively

allows the water surface to exist for the entire computational domain (including regions of dry

beach). This is accomplished by relegating the water to narrow slots (or equivalently, porous

regions) in the 'dry' portions of the domain. In the dry regions, the amount of water is kept

negligibly small, but non-zero. As a wave crest approaches the beach, the slot rapidly fills and the

water level rises above the bottom level; as the wave recedes, the water runs off until only the small

amount that resides in the slot remains. The basic approach is described by Kennedy et al. (2000)

and Chen et al. (2000); a slightly modified approach is used here.

The slot run-up method is implemented using a modified continuity equation, based on the

exact equation (1), above. The modified equation is

77 - {A(, 7)u +h [aih 2 (u" + %~) + a2h (hu),, + a2h (hv), 5] }
- {A(77)v +h [aih 2 (U,+ Vyy) +±a2 h (hu).,, +-a2 h (hv),,]} ±1 +S(x, t) , (11)

where the run-up model is represented by A(77). For no run-up modeling, A(77) = h + 77; the model

is invoked by setting

A(7) = +r7 (h +±) <0

S(h +q) + (h.- h) 6 (h + 7) > 0, (12)

where 3 is the relative cross-sectional area of slots (3 is typically set to 0.02), and h, is set to the

maximum water depth in the domain.

This implementation of the slot run-up model undergoes an abrupt transition as the waves run

up and 'fill' the slot, compared to the form of Kennedy et al. (2000), which has a gradual transition;

however, in practice a gradual transition does not ensure smoothness in the horizontal derivatives

of A(i7 ), and lack of smoothness can lead to instability. For this reason, a high-limit filter which
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cuts off at twice the grid spacing is applied to A(rj), once it is calculated. This ensures well behaved

derivatives and results in a robust model.

2.2.2 Wave breaking and bottom friction

Wave breaking is modeled in a manner similar to that described in Kennedy et al. (2000), i.e. by

adding an additional diffusive term to the momentum equations. This is given by

1 {Vb[(h+i)u1z} 1xb 1u

F,,b = hI+ r [( h + )+ 2 {b [(h + ,,)ul + vb [(h + q)v],}1 (13)-h +i 77•(+••• 2(h +77
s,b= + I-iU {vb [(h + 71)v]. + 1 b [(h + 7)u}, (14)

h + [(h 2( + 77) (

where v' is the eddy viscosity associated with breaking. This eddy viscosity is defined after Zelt

(1991) as

"Vb = B32(h + 7)?, (15)

where 6b = 1.2 and

B = min max(0, 277t~ ] (16)

where q* = 0.3vg h + r). The form of (16) causes B to be bounded by zero and one and vary

linearly between those limits as 77 increases from rl* to 2rlt.

The effects of bottom friction are modeled via source terms in the momentum equations which

oppose the fluid motion. The model form is given by

Fs,f = --Cbh (17)

Gu•,f - Iu1v (18)Gs~f = -Ch +,q,

where Cb = 0.005.
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2.2.3 Wavemaker source function

Monochromatic waves are generated using a source term in the continuity equation (1), as described

in Wei et al. (1999). The source function amplitude is set to

so (o + - )gk(kho)3 2770 cos(O) (19)
So = wuk [1 - ao(kho) 2 ]

where 7/o is the wave amplitude, w is the wave circular frequency, 0 is the wave direction measured

counter-clockwise from the x axis, k = 27r/A is the wavenumber, ho is the fixed depth under the

wavemaker, and a = b, + b2 . Here, a is given by

0= -e /40 (20)

where k, := k cos(0) and /3 = 5(A/2)- 2 . The source function used in (1) for a wavemaker located

at x = 0 on the left-hand boundary of the computational domain is then given by

S(x, t) w(X) S(Yt)

= e-_3X 2 So sin(kyy - wt + ¢) (21)

where w(x) =eý-.3'x 2 , ky = ksin(0) and 0 < 0 _K 2ir is an assigned phase.

For irregular waves, the spectral densities of the Fourier modes comprising the wave spectrum

are converted to equivalent amplitudes and treated as monochromatic waves. The wavemaker

source function is then given by

N_

S(x, t) , e-I3X 2 SO sin(k4 y - wit + ¢•), (22)

where Nm is the number of modes and

(Wi)ik- [1 - a0k(kiho)2] 2•77 cos(0i) (23)
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and

01 = y e-ie(0)2/40 . (24)

Here, the value of 31 is calculated from the dominant wave (spectral peak), resulting in a fixed

wavemaker width for all spectral components.

The present implementation allows the specification of the wave amplitude, period and direction

from the command line for monochromatic waves. For irregular waves, a frequency-direction

spectrum file in the FRF 8m Array format is read.

2.3 Numerical implementation

The Boussinesq equations incorporating the physical models described above are solved using a

parallel FORTRAN code. The numerical implementation is identical to that described in Wei

et al. (1996): explicit time integration using a third order predictor and an iterated fourth order

corrector. The spatial grid is Cartesian with uniform spacing, and the grid is generated internally

by the code. The solution is filtered every twenty time steps to eliminate spurious short-wavelength

components (which result from numerical errors and nonlinearities and can accumulate due to the

absence of natural diffusion or dissipation in the equations). The code is parallelized using domain

decomposition and the message-passing interface (MPI). It will run for an arbitrary number of

processors (the number of processors is specified on the command line) on both Linux (Portland

Group compilers and LAM MPI) and SUN Microsystems (Forte compiler suite and MPICH MPI)

platforms. Bathymetry information is read from a binary file on the same grid as the computational

grid, while the tide is set via a command line argument.

3 The assimilation methodology

It is desired to determine the wavemaker source function which will yield predictions from the

extended Boussinesq model which match most closely a set of time-series observations of the near-

shore surface elevation and velocity. The approach taken will be based on the variational method

described by Le Dimet & Talagrand (1986), corresponding to the 'strong-constraint' formalism
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described by (Bennett, 1992, p. 148). The objective is to determine the source function which

minimizes a 'cost function' (a positive-definite measure of the error in the predictions) subject

to the constraint the the dynamical equations governing the wave field (the extended Boussinesq

equations) are exactly satisfied.

The above constrained minimization problem is equivalent to the unconstrained minimization

of the cost function 'augmented' with the product of the constraint equations and a set of 'adjoint'

variables (i.e. Lagrange multipliers). The cost function will be minimized for the set of model

inputs which correspond to a stationary point of this augmented cost function; i.e. where its first

variation vanishes. The requirement that the first variation vanish yields the governing equations

for the adjoint variables, as well as the relationship between the adjoint variables and the gradient

of the cost function with respect to the control variables, i.e. the wavemaker source function.

In the following sections, the cost function and the augmented cost function are described.

The first variation of the cost function is taken and the conditions under which the first variation

vanishes, the Euler-Lagrange equations, are derived. The Euler-Lagrange equations are then used

to develop both the adjoint equations and the relationship between the adjoint solution and the

gradient of the cost function with respect to the wavemaker source function.

3.1 The cost function

The cost function is comprised of two parts. The first part is a measure of the error in the predicted

wave field. The second part is based on the model input being estimated (i.e. the wavemaker source

function), and is included to ensure a unique solution.

The first part of the cost function is a positive-definite measure of the error in the predicted

wave field. Observations are taken to consist of time records of length T of the surface elevation

and vector velocity at N discrete locations in the domain. In equation form, this is given by

N f'I J[VI(7 _l)2 U UJ3 V _T"2 ~ i

where the circumflex indicates an observed quantity, the delta functions specify the locations of the

observations, and the pk are constants which allow variable weighting of the different observation

quantities. The integration here is over the entire space-time region of interest, 0 < t < T and for
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all spatial locations x G 1?.

The second part of the cost function is based on the estimated model inputs, in this case the

wavemaker source function. In order to assure a unique solution, the input variable(s) must also

be penalized via inclusion in the cost function (Bennett & Miller, 1991). This can be accomplished

by including one or more positive-definite measures of the wavemaker source function, which leads

to

= TI h [ 3 2ýt + so4hOS( t)]1ckdt , (26)

where ý indicates position along the centerline of the wavemaker 3 (which could correspond to a

domain boundary), L, is the length of the wavemaker, and Sý is the slope of the source function

along the wavemaker. The first term constrains the source function to have minimum possible

energy, while the second constrains the directional spread of the generated wave spectrum.

Combining J1 and J 2 yields the complete cost function:

= o/J[ = _ , i2 ho V -&2 6(x - ) dxdt[ (,7 + V2 + ' _ + _0 _ 5(×
I 9 NT

+f~ hjT ~ LT S2 (ý, t) + so4h Q2S(, t)] d.dt (27)

The methods of variational calculus (see e.g. Courant & Hilbert, 1953) show that minimizing the

cost function J subject to the constraint that the solution satisfy the extended Boussinesq equations

is equivalent to unconstrained minimization of an 'augmented' cost function. The physical solution

variables are (7, u, v) and the corresponding governing equations are given by

({?7t - E - wS}, {Ut - F - Fit}, {Vt - G - Git}) = 0. (28)

(Here, the source terms in the momentum equations are ignored in the development of the adjoint

equations.) A set of adjoint variables (a, /, -y) is introduced which correspond to (77, u, v). The cost

function is augmented by the product of these adjoint variables and the governing equations (the
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extended Boussinesq model). This augmented cost function C is given by

S= +J.-LT/T o{, E - wS+ -{U,- F-Fit) +.-•{Vt-G- G11]dxdt. (29)

Here, C is a functional of a, 01, 7y, 7, u, v and S, i.e. £ = L(a, 03, -y, 17, u, v, S).

3.2 The Euler-Lagrange equations

The Euler-Lagrange equations define the conditions for the minimum of the augmented cost func-

tion. The cost function will be at a minimum for a stationary point, i.e. where the first variation

of C the vanishes. The first variation is given by

6L =-da±-d/03+ -d±Y+-? d +_v+_S(0
49a a)3 a-d 97 au ± dv as(

and 6C = 0 for a stationary point. Hence, each of the terms in (30) must vanish independently,

which requires that the partial derivatives of L all be zero: The resulting set of requirements that

this imposes are the Euler-Lagrange equations. These are examined in the next sections.

3.2.1 The constraint equations

Setting the first three terms in (30) to zero yields the condition that the constraint equations, i.e.

the extended Boussinesq model, must be satisfied at the minimum in C. These terms are

--- da- [frit - E - wS} 6a] dxdt , (31)

d3 [J{U,- F -Fit}) ] dxdt, (32)

a-d = [{V - G - Gi}& Sy] dxdt. (33)

Since the regions for the integrations are arbitrary, the integrands must be identically zero for the

integrals to vanish. In addition, the values of 6a, 6/3 and &y are arbitrary, the terms in braces

must vanish independently. This requirement is the same as requiring the extended Boussinesq

equations (1-3) to be satisfied exactly. (This is the 'strong' constraint on the wave field.) This

essentially requires that the wave field which gives the minimum cost function (agrees best with
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the observations) has the appropriate dynamics.

3.2.2 The adjoint Boussinesq equations

The next three terms of (30), those involving 617, 6u and Jv, yield a set of equations for the adjoint

variables a, /3 and -/. The first variation of C with respect to rj is given by

[o,~~ y- 7  (617) t- 61,J77 ý "f ,]dd (34)

Here, the U, V, F, and G, terms do not appear since they have no 77 dependence. After integrating

by parts to move the 571s outside the derivatives and rearranging, the result is

[77 a L •, - E -)-(x -x 1 . d ,dt (35)

where the final term in the brackets comes from the r-dependent term in the cost function. The

first variation of (30) will vanish independent of the value of 377 only if the term in brackets is zero.

This yields the governing equation for a, the adjoint of the variable 77:

at = E' + 2 10(7- )(x - xi) , (36)

where

E' = -ua, - va. - g(/3, + -y) (37)

To obtain the equation for /3, the adjoint of u, we take the first variation with respect to u.

This gives the result

-udu= 1Jdu + f T> [• E a/3 9 + G - G_ 6 du dxd .(38)Y~u au Joirz [1 J u J ).J

After integrating by parts and collecting terms this yields

r-du = - [u'(r)]1 - -[F,']t N- 2 (u - i)6(x - x' b d dt. (39)
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The first variation of (30) will vanish independent of the value of 6u only if the term in brackets is

zero. This yields the governing equation for /3, the adjoint of the variable u. The equation is

[U'] = F' + [F1l + 2 Z(u - iii)5(x - xi) (40)

where

U' = [3+ 1b (h20).. + b2 h(ho)..j (41)

F' = - [(h + ?)a. + a1 {(h3Ca)xa + (hc3ay)x} + a 2h {(h 2 ),x) + (h2, 5 )Xy}]

S- (u/3)x - (VO) + ± (42)

F = - [b,(h2-Y)XY + b2 h(h7)xy] . (43)

The equation governing -y, the adjoint of v, can be derived by inspection from the 3 equation.

Observing that the u and v equations are symmetric with respect to (u,v) and (x,y), i.e. inter-

changing x and y, as well as u and v, in the u equation (2) yields the v equation (3), and vice versa.

A similar interchange in the 77 equation (1), yields (1). Hence, the governing equations for -y is

[V = G' + G']t 2
[V/'], ' +[ 1] + --NT D(v - iUi)6(x - xi) (44)

i

where

V' = y + [bI(h2y)Y + b2h(hy)y]j (45)

G'= - [(h +?7)ay + a, {(h3y)yy + (h 3x)xy} + a 2h {(h2Qy)Vy + (h20ax)xy}]

+vyy - (v-)y - (uy)x + u,/3 (46)

GI= - [bl(h 20)x + b~h(hO)xy] . (47)

3.2.3 The cost function gradient

This final term in (30) involves the wavemaker source function S(ý, t), where ý is the coordinate

along the length of the wavemaker. (Here, x = (ý, ý), where ý is the coordinate along the wavemaker

and C is the coordinate normal to the wavemaker; for the work presented here, ( = (x, y), but
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this is not general requirement.) If the constraint (Boussinesq) equations and the adjoint equations

are satisfied, then last term in (30) is the only one that remains, and therefore

5J = a--dS . (48)as

This quantity D--dS contains contributions from the cost function and the continuity equation,

where the wavemaker source S appears:

S = I-dS + a w6S, dxdt

jT LTK2 [ý03S 5S + ýo4h~o Sý gddt+ ± -- W(() 6S] dx dt (49)

Integrating by parts and collecting terms yields

T2h 0 V~ ~~
Th P3 ja w () d( S dgdt ,(50)6 ,C = BT f L -- 0Q S

where the integral inside the braces is over lines normal to the wavemaker centerline (indicated by

A/'), i.e. in the (-direction.

Equation (50) indicates that a small decrease in C (the thing we are trying to minimize) will

result from a change in the source function 6S given by

6S {c 2h 0 [0S- h2MSlý - fca((, ý) w(ý)d( (1

Hence, the gradient of the augmented cost function L with respect to the wavemaker source function

S is effectively given by

a0 = 2h°0 [W3S - W4h2Sl] fa((, ) w(()d( . (52)
T - gLT 03 - .I

This gradient can be used to determine the value of the wavemaker source function which will yield

the best agreement between the estimated wave field and the observation data.

Examination of (52) shows that the gradient has three components. The first two depend on the

source function S and its second derivative S•, and are included to produce a unique solution. The
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third depends on the adjoint solution integrated over the region of the wavemaker. This portion of

the gradient relates directly to the error in the predicted wave field

3.3 Solution of the adjoint equations

The adjoint equations are similar in mathematical character to the extended Boussinesq equations

(they also have identical linear dispersion properties). As a result, the same solution techniques

that are used to solve the extended Boussinesq model equations can be applied to solve the adjoint

equations. While the boundary and initial conditions for the adjoint equations are somewhat

problem-dependent, a few general statements can be made.

The adjoint equations are solved for the time period for which the observations are available.

They are integrated backward in time from the final time, t = T. The 'initial' conditions for the

adjoint are a(x,T) = fl(x,T) = -y(x,T) = 0.

The spatial boundary conditions for the adjoint equations are taken to be the same as for

forward equations: a has zero-gradient conditions at all boundaries; /3 = 0 and -y= 0 a the x and

y boundaries, respectively, and zero-gradient conditions elsewhere.

Each adjoint equation contains an 'observation' term for input of observations of the correspond-

ing physical variable (77 for the a equation, u for the /3 equations, and so on). Since the adjoint

equations, and their boundary and initial conditions are otherwise homogenous, the observation

terms are what make the adjoint solution non-zero. When the predictions for 77, etc. agree exactly

with the observations, the observation terms become zero, and the resulting solution to the adjoint

equations is identically zero. The gradient of the cost function with respect to the inputs for the

Boussinesq model will then be zero, and the assimilation procedure will have converged.

3.4 Assimilation algorithm

The cost function gradient calculated from the adjoint solution is used in a conjugate-gradient

minimization scheme where cost function is minimized by adjusting the wavemaker source function.

The procedure goes as follows:

1. The adjoint equations are solved backward in time with the observations as input and the

gradient of the cost function with respect to the wavemaker source function is calculated from
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the adjoint solution in the region of the wavemaker using (52).

2. The direction of steepest descent (opposite the gradient) is defined as the search direction.

3. The location of the minimum for the cost function along the search direction is determined us-

ing a secant method to find the location where the directional derivative (the inner product of

the local gradient with the search direction) vanishes. Each iteration requires a forward model

solution with the updated source function, and an adjoint model solution with the forward

solution as input, followed by the calculation of the gradient from the adjoint solution.

4. The most recent gradient and the original search direction are used in the determination of

the new search direction using the conjugate gradient scheme.

The last two steps represent a conjugate gradient cycle, and are repeated until the forward predic-

tion converges. Once the procedure has converged, the most recent forward prediction represents

the best fit to the observation data. The final wavemaker source function is saved to a file and

can be used as input to the forward model to reproduce the best-fit wave prediction outside of the

assimilation procedure.

This procedure is implemented in a parallel FORTRAN code which executes both the extended

Boussinesq model and its adjoint and controls the conjugate gradient minimization algorithm. The

code is parallelized using domain decomposition and the message-passing interface (MPI). As in the

description of the Boussinesq model above, it will run for an arbitrary number of processors (the

number of processors is specified on the command line) on both Linux (Portland Group compilers

and LAM MPI) and SUN Microsystems (Forte compiler suite and MPICH MPI) platforms. Inputs

are the same as for the Boussinesq model are described above with the addition of a data file for

each of the data records used in the assimilation. Execution of the forward model or the assimilation

procedure is controlled via command-line arguments, as are the parameters of the iteration scheme.

4 Forward Boussinesq model calculations

The extended Boussinesq model code including the wave-breaking and run-up models and the

wavemaker source function was tested by calculating three different situations. The first was

monochromatic waves propagating across a realistic bathymetry, derived from a survey for a 1 km
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square area around the US Army Corps of Engineers Field Research Facility (FRF) in Duck, NC.

This tested the basic wave propagation capabilities of the code and served as validation of the run-

up model in particular (a run-up implementation that works on a planar beach is not necessarily

robust enough for a realistic beach topography). The second case was the same bathymetry, but

for irregular waves generated from a measured FRF wave spectrum. This tested the model for

propagation and run-up of multiple wave modes, and also verified the broad spectrum directional

wavemaker implementation.

4.1 Monochromatic waves

To test the basic wave generation, propagation and run-up in the Boussinesq model code, it was

applied to a 1 km square region around the USACE FRF in Duck, NC. The model was run on a

2 m x 10 m (cross-shore by along-shore) grid. The bathymetry is shown in figure 1, and is seen to

vary from zero to 8 m, with a bar located roughly 200 m offshore. There is a break in the bar at the

location the FRF pier. To test the assimilation algorithm, synthetic measurements were extracted

at the locations indicated in the figure, roughly at the crest of the bar.

The Boussinesq model was run for this bathymetry using a time step of 0.1 s. Waves were

generated by a mass source at the left-hand boundary. The wavemaker source region centered at

the boundary (x = 0), had a Gaussian profile and extended about 50 m into the computational

domain. Waves were generated with a significant wave height Hmno = 1 m, a wave period of Tp = 6 s

and by using a traveling wave (propagating in the +y-direction) in the source function were set to

propagate at 10 degrees to the cross-shore direction. The resulting wave field is shown in figure 2.

Here we can see that the waves run up on the beach and the water surface does not extend to

the right-hand side of the domain. The wave field shown in the figure is a snapshot of the surface

elevation after the waves have been running up on the beach several minutes of real time. For

these calculations, wave absorbing layers are located within 50 m of the y boundaries to suppress

reflections; this is responsible for the change in wave direction very near the boundaries.

In figure 2, seven locations spaced 100 m apart are indicated for which records of r7(t), u(t) and

v(t) are saved. The velocity saved is for the reference depth za, about midway in the water column,

although in shallow water the velocity is relatively uniform over depth. The temporal length of

the records was several times the time required for a wave to traverse the computational domain,
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FIGURE 1. Bathymetry used in simulations for a 1 km square area around the USACE Field
Research Facility at Duck NC.
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FIGURE 2. Monochromatic waves with Hmo = 1 m, Tp = 6 s propagating at 10 degrees to

the cross-shore direction over the bathymetry of figure 1, above. The waves are
generated at the left, offshore boundary and run up on the beach at the right.
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FIGURE 3. Sample wave records showing 77(t), u(t) and v(t) for locations 3, 5 and 7 in

figure 1, above.

and the sampling rate was 0.1 sec, the computational time step. A portion of three of those time

records is shown in figure 3.

4.2 Irregular waves

To calculate realistic wave fields using the extended Boussinesq model code, broad-spectrum waves

must be generated. A broad-spectrum wavemaker, described above in section 2.2.3 was imple-

mented. This wavemaker takes as input a spectrum in the format of the FRF 8m array, ASCII

output file. Figure 4 shows a snapshot of the wave field generated using a measured FRF spectrum

as input. The wave field has a significant wave height of 1.3 m, a peak wave period of 5.5 s and
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FIGURE 4. Irregular waves with Hmo = 1.3 m, T,= 5.5 s with a dominant wave direction
roughly cross-shore propagating over the bathymetry of figure 1, above. The
waves are generated at the left, offshore boundary and run up on the beach at
the right.

the dominant wave direction is in the cross-shore direction. Figure 5 shows a 30-minute average of

the surface elevation and velocity for the wave field shown in figure 4. Time histories of 77, u and v

from locations 2, 4 and 6 in figure 1 are shown in figure 6.

Broad-spectrum waves represent a challenge for nonlinear Boussinesq models. The long waves

with higher propagation speeds set the requirements for the time step (based on the local Courant

number). The short waves set the spatial grid requirements. In addition, the presence of multiple

Fourier components and the nonlinearity of the model leads to the generation of sum and difference

frequencies. These can lead to accumulation of spurious wave energy in wavelengths near the grid

spacing (sawtooth waves). The results shown in figure 4, which represents the wave field at the end

of 30 minutes of real-time evolution, shows no evidence of any short-wave noise.
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FIGURE 7. The adjoint solution a(x, t) for the seven in-situ observations of the monochro-
matic wave field. The gradient of the cost function with respect the wave maker
source function is calculated from the adjoint solution near the left boundary.

5 Assimilation results

In this section, the assimilation algorithm is applied using observations generated using both the

monochromatic and irregular wave simulations described above.

5.1 Results for monochromatic waves

Time records of surface elevation and velocity for monochromatic waves were assimilated into the

Boussinesq model using the procedure outlined above. This was done for the wave field shown

above in section 4.1. The first step in the procedure is to solve the adjoint Boussinesq equations

using the observations as input. A snapshot of the resulting adjoint solution is shown in figure 7.

This figure shows the adjoint surface elevation field a(x). The adjoint solution near the left-hand

boundary is used to calculate the gradient of the cost function with respect to the wavemaker source

function.

Figure 8 shows the iteration history of the cost function. The complete cost function JTotal
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FIGURE 8. Iteration history of the cost function JTotai (27) for monochromatic waves along
with the contributions from the observations Job, (25) and the source function
J, (26); here each iteration corresponds to a conjugate-gradient cycle. This
results shows that the cost function is reduced substantially and converges in
less that ten iterations.

defiend by (27), above, is shown, along with the components attributed to the observations Job,

(25) and that attributed to the wavemaker source function J, (26). Each 'iteration' in the figure

shows the multiple values that are obtained during a conjugate-gradient cycle. As the iterations

proceed, the portion of the cost function attributed to the observations decreases, while that from

the source function increases, as is expected. The overall cost function J decreases and levels out

after about 5 iterations, and is clearly converged by ten iterations.

The estimated sea surface resulting from the assimilation procedure is shown in figure 9. With

the exception of some small undulations in the wave crests, the wave field is reproduced with

good accuracy. Figure 10 shows a comparison between the time-series observations used in the

assimilation process and those from the resulting estimate. Again the agreement is quite good.
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FIGURE 9. Sea surface elevation estimated using the assimilation procedure; this result
compares well to the actual sea surface shown in figure 2.

5.2 Results for irregular waves

Time records of surface elevation for the irregular waves of section 4.2 were assimilated into the

Boussinesq model using the procedure outlined above. The iteration history of the cost function

is shown in figure 11. Here it can be seen that the cost function reduction is less than for the

monochromatic waves, shown above, and there is only about a factor of two reduction.

A snapshot the estimated wave field is shown in figure 12, compared to the corresponding

snapshot from the actual wave field. Comparison of the two images shows that while the long-wave

components of the sea surface are captured well, the short-wave components are missing from the

estimated sea surface. This is particularly true of short-wave components propagating in the along-

shore direction. Figure 13 shows a comparison between the time-series observations used in the

assimilation process and those from the resulting estimate. Overall the lower frequency component

are captured, but the higher frequency components, in particular in the v velocity are missed. The

level of error in the u velocity estimate is comparable to that in the v velocity indicating that

oblique waves are not being well captured.
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FIGURE 12. a) Sea surface elevation estimated using the assimilation procedure. b) Actual
sea surface corresponding to the time for the estimated sea surface. The es-
timated wave field captures the longer wavelength components of actual sea
surface.
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6 Conclusions and recommendations

This report describes a variational approach for assimilation of single-point in-situ observation

of surface elevation and velocity into the extended Boussinesq model of Wei et al. (1996). The

mathematical framework for assimilation is presented, along with applications of the procedure for

two cases: monochromatic waves and broad-spectrum irregular waves. Overall the performance

of the approach for monochromatic waves is quite good; while for irregular waves, some of the

short-wave detail, especially for waves propagating in the along-shore direction, is missed. As

part of the development work for the assimilation procedure a parallel Boussinesq model code

was improved through addition of run-up, wave-breaking and and bottom-friction models, and a

directional wavemaker was implemented.

The assimilation methodology is based on a variational approach wherein the wavemaker source

function for the Boussinesq model which results in a best fit between the calculated wave field

and the observations is determined. To do this, a cost function is defined which is a positive-

definite measure of the error between the predictions and observations. The control variable, that

which is adjusted to produce the desired wave field, is the wavemaker source function for the

Boussinesq model. To find the minimum in the cost function, subject to the constraint that the
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estimated wave field satisfy the extended Boussinesq equations, the cost function is augmented

with the Boussinesq equations weighted with the adjoint variables. Setting the first variation of the

augmented cost function with respect to the solution variables and the adjoint variables results in

the conditions required for a minimum; it also produces the adjoint equations. The solution of the

adjoint equations is used to calculate the gradient of the cost function with respect to the control

variable. This gradient is used in a conjugate-gradient iteration scheme to find the wavemaker

source function which yields the best fit to the data as measured by the cost function. Additional

terms related to the wavemaker source function are included in the cost function to ensure a unique

result.

As part of the code development for this effort, and existing parallel Boussinesq code based

on both the formulation and numerical approach of Wei et al. (1996), was extended to include

modeling for run-up, wave-breaking and bottom friction. In addition both monochromatic and

broad-spectrum wavemakers were implemented. This results in a Boussinesq model code capable

of generating realistic wave fields either as a product of the assimilation process, or as a direct

forward prediction based on a known incident wave spectrum.

The assimilation procedure was applied to two cases, observations of monochromatic waves

and irregular waves. Application of the procedure for monochromatic waves results in a converged

solution after about five conjugate gradient iteration cycles. Comparison of the spatial variations

in the wave field at an instant in time reveals some spatial undulations in the estimated wave field,

but otherwise good agreement. This indicates that some spurious higher-wave-number components

have been introduced by the assimilation procedure. Comparison of the estimated time series at

the observation locations to the observations shows good agreement between the predictions and

observations.

Use of the assimilation procedure for data derived from broad-spectrum irregular waves produces

encouraging, but less-good results. The assimilation procedure converges in about ten iterations,

although it continues to drop, albeit slowly, for about ten more iterations. The results estimate of

the wave field reproduces the longer wavelength components, while shorter wavelength components

are missed. This is especially true for the along-shore propagating wave components.

The approach developed and presented here appears promising, allowing the entire wave field

to be estimated from a set of single-point in-situ observations. The resulting estimate is consistent
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with the physics of near-shore waves as represented in extended Boussinesq models. The work

under this effort is, however, primarily a demonstration that such an approach to the problem is

feasible. Additional necessary work includes:

"* Exercising the assimilation algorithm for a broad range of simulated wave fields to determine

the limitations of the resulting wave estimates.

"* Application of the assimilation algorithm to field observation and comparison to other ground-

truth data.

"* Investigation of alternative approaches to ensuring uniqueness of the resulting wave field. The

present approach penalizes spatial gradients in the wavemaker source function and may result

in suppression of along-shore waves; and an alternative approach which does not have this

effect would be desirable.

Finally, the assimilation algorithm described here allows one to relate a set of single-point in-

situ observations to a synoptic picture of the wave field. This ability can most likely be exploited

to develop methods to determine an optimal approach for observing waves in a give region, i.e.

an approach which extracts the maximum amount of information from the minimum number of

observations.
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